DataScientist: Tanggung jawab, keahlian, dan kisaran gaji 2022. Meski nampak memiliki nama yang serupa, kedua jenis perkerjaan ini ternyata tetap memiliki perbedaan. Data Scientist memproses data menggunakan beberbagai cara dan algoritma untuk menemukan solusi, sedangkan Data Analyst bertanggung jawab dalam menghasilkan laporan hasil Bacajuga : Kenali Perbedaan Data Scientist, Data Analyst dan Data Engineer. 2. Day to Day Data Analyst dan Data Scientist. Sama halnya dengan data scientist, seorang data analyst juga memiliki pekerjaan yang mirip setiap harinya, seperti meeting, mengecek email, diskusi dengan tim lain, dan mereview project yang sedang berjalan. 2 Data Engineer. Data engineer bertugas untuk membangun dan memonitor sistem/arsitektur manajemen data yang ada di sebuah perusahaan. Nantinya sistem akan dimanfaatkan untuk mengumpulkan, mengelola, dan mengubah data mentah yang berjumlah besar menjadi informasi yang dapat digunakan untuk ditafsirkan oleh data scientist dan analis bisnis.Tujuan utama dari data engineer adalah membuat data Tapi perbedaan signifikan dari keduanya adalah Data Scientist lebih menggunakan kemampuannya untuk menafsirkan data guna menyampaikan insight kepada orang lain, sedangkan Data Engineer menggunakan kemampuannya untuk membangun infrastruktur yang berkinerja tinggi (high-performance) yang diperlukan untuk membantu pekerjaan Data Scientist dan Data Analyst, yakni menyiapkan data untuk dapat ditafsirkan dan dianalisis. Berikutadalah perbedaan data analyst, data engineer, dan data scientist, jika ditinjau dari tiga aspek tersebut: 1. Perbedaan Berdasarkan Definisinya. Perbedaan pertama dari ketiga profesi tersebut dapat dilihat dari definisinya masing-masing. Adapun definisi dari ketinganya yaitu: MemahamiPerbedaan Role Data Analyst dan Machine Learning Engineer. Dalam rangka membangun perangkat lunak berbasis data secara efisien, perusahaan membutuhkan spesialis berpengetahuan yang memiliki pengalaman dalam bekerja dengan data dan alat yang sesuai. Peran Machine Learning Engineer dan Data Scientist relatif baru sehingga banyak orang Mulaiberkarir menjadi praktisi Data Analyst, Data Engineer, ataupun Data Scientist tentunya bukan suatu hal yang mustahil. Latar Belakang Pendidikan Ini lho yang Dicari Perusahaan. Untuk menjadi seorang Data Scientist, ternyata beberapa perusahaan memiliki ketentuan dari segi latar belakang pendidikannya. seperti IoT dan Fintech mereka e5WpZ0. Baru-baru ini profesi Data Scientist, Data Analyst dan Data Engineer menjadi profesi yang banyak diminati oleh berbagai kalangan. Ketiga profesi ini sangat erat hubungannya dengan data. Di era digital transformasi seperti sekarang, banyak sekali perusahaan yang membutuhkan profesi yang berhubungan dengan teknologi dan data ini. Karena data telah menjadi suatu kebutuhan penting bagi perusahaan dalam membuat suatu keputusan. Oleh karena itu ketiga profesi ini banyak dilirik oleh perusahaan dari berbagai bidang sama-sama berhubungan dengan data, Data Scientist, Data Analyst dan Data Engineer sebenarnya memiliki perbedaan yang cukup signifikan. Ketiga profesi ini memiliki peranan dan tanggung jawabnya masing-masing. Penting untuk mengetahui perbedaan ketiga profesi ini agar ketika kamu ingin melamar pekerjaan dapat memahami perbedaannya. Penasaran bagaimana job description dari ketiga profesi ini? Simak artikel dibawah ini, ya!1. Deskripsi PekerjaanData ScientistSeseorang yang menganalisis dan menafsirkan kumpulan data yang kompleks. Mulai dari pengumpulan, mengolah, dan menganalisis data dalam jumlah besar. Data Scientist adalah orang yang bertugas mengolah data dari Data Engineer dan melihat apakah ada peluang bisnis baru dari data yang AnalystData Analyst merupakan seseorang yang bertanggung jawab mengolah data, mengambil kesimpulan, dan melakukan visualisasinya. Profesi Data Analyst mengharuskan untuk berhadapan langsung dengan banyak data. Tugas seorang Data Analyst adalah mencari insight untuk memajukan bisnis dari berbagai aspek, lalu kemudian diberikan pada data EngineerSeorang yang bertugas untuk mengembangkan dan membuat desain arsitektur manajemen data, serta memelihara/memonitor infrastruktur data di perusahaan. Profesi ini akan mengelola jalur data untuk perusahaan yang menangani data dalam jumlah besar. Data Engineer juga harus memastikan bahwa data bisa dikumpulkan dan diambil secara efisien dari sumber ketika dibutuhkan, dibersihkan dan juga Mengenal Profesi Data Scientist 2. Peran dan Tanggung JawabData Scientist- Membersihkan, memproses, dan mengolah data Terlibat dalam perencanaan strategik untuk analisis Menganalisis dan mengoptimalkan penggunaan Machine LearningData Analyst- Tugasnya membersihkan, menganalisis, dan membuat visualisasi Lebih ke representasi data melalui laporan dan visualisasi Bekerja dengan tim manajemen untuk dapat memahami kebutuhan Engineer- Tugasnya mengembangkan dan membuat desain arsitektur manajemen data, serta memelihara/memonitor infrastruktur data di Memastikan keakuratan data dan fleksibilitas Menyortir, mengurai, mengevaluasi, dan membersihkan data mentah menjadi clean Skill yang DibutuhkanData ScientistMenggunakan program seperti Spreadsheet dan SQL. Memiliki kemampuan analisis dan statistik, pengambilan keputusan, komunikasi dan soft-skills lainnya. Memiliki pengetahuan Machine Learning dan Deep Learning, Data Mining, optimasi data, dan programming tingkat lanjut C/C++, Perl, Python, SQL, dan Java.Data AnalystMenggunakan program seperti Excel, Google Analytics,Tableau, dan SQL. Harus menguasai istilah bisnis, SQL, Excel, membuat laporan dan tools pembuat infografik/grafik yang EngineerMenggunakan program seperti Hadoop, NoSQL, dan Phyton. Harus menguasai SQL, Databases RDBMS,NoSQL, Data Warehouse, Data Lake, dan lain lain, ETL Tools Pentaho, Ab Initio, dan lain lain, Pipeline Airflow, Kafka, Luigi, Azkaban, dan lain lain, basic programming dan shell juga Yuk Kenal Role Data Scientist, Profesi Menarik Dengan Gaji Besar 4. Perdalam Role Data Analyst dengan Akses Mini QuizSudah kenal dengan perbedaan 3 role profesi data science? Yuk, perdalam lagi kompetensinya dengan akses mini quiz yang tersedia di DQLab. Sign up sekarang di dan nikmati quiz GRATIS "Basic Analytics" untuk menikmati pengalaman belajar yang seru menyenangkan serta aplikatif pada industri nyata! Kamu bisa membangun portofolio datamu dengan belajar data science di DQLab. Bagaimana cara mengikuti quiznya? simak caranya dibawah ini 1. Klik button dibawah untuk signup di Masuk ke 3. Pilih menu "Quiz"4. Ikuti Quiz Basic Analytics yang tersedia5. Selamat mencoba sahabat data DQLab!Penulis Salsabila Miftah RezkiaEditor Annissa Widya Davita Data Enthusiast DigitalBisa UntukIndonesiaLebihBaik Data science menjadi perbincangan dan trend-center bagi para penggiat teknologi di bidang statistika. Sebenarnya, data science itu apa? Melansir dari Oracle, data science merupakan ilmu yang menggabungkan berbagai bidang, termasuk statistik, metode ilmiah, kecerdasan buatan AI, dan analisis data, untuk mengekstrak nilai dari data. Penggabungan berbagai keterampilan untuk menganalisis data yang dikumpulkan dari web, smartphone, pelanggan, sensor, dan sumber lain untuk mendapatkan wawasan yang bisa untuk di olah. Mengapa Data Science Sangat Penting? Ilmu ini sangat menarik saat ini. Lalu, mengapa data science sangat penting? Karena perusahaan sangat membutuhkan data science. Teknologi modern telah memungkinkan penciptaan dan penyimpanan peningkatan jumlah informasi dan volume data telah meledak. Diperkirakan bahwa 90 persen dari data di dunia diciptakan dalam dua tahun terakhir. Kebanyakan data hanya berada di database dan tidak tersentuh untuk diolah. Pengelolaan data sangat dibutuhkan agar lebih tersusun dan lebih transformatif untuk dapat memberikan suatu keputusan bagi perusahaan. Data science mengungkapkan tren dan menghasilkan wawasan yang dapat digunakan bisnis untuk membuat keputusan yang lebih baik dan menciptakan produk dan layanan yang lebih inovatif. Mungkin yang paling penting, ini memungkinkan model pembelajaran mesin ML untuk belajar dari sejumlah besar data yang diumpankan kepada mereka, daripada terutama mengandalkan analis bisnis untuk melihat apa yang dapat mereka temukan dari data. Data Scientist, Data Analyst dan Data Engineer Tentu saja pekerjaan di bidang data science sangat dibutuhkan di era saat ini. Banyak perusahaan yang mencari talenta digital terkait data science. Berikut beberapa role pekerjaan di bidang data science, diantaranya 1. Data Scientist Seorang data scientist menganalisis dan menafsirkan data digital yang kompleks untuk membantu para pemimpin bisnis membuat keputusan yang lebih baik berdasarkan data. Data scientist memiliki pengetahuan dan keahlian yang mendalam dalam matematika aljabar linier dan kalkulus multivariabel yang telah mereka peroleh dengan mendapatkan gelar dalam disiplin ilmu pengetahuan. Berikut role dari data scientist, diantaranya Membersihkan dan mengumpulkan data berkualitas untuk melatih algoritma Mengidentifikasi pola tersembunyi dalam kumpulan data Membangun model pembelajaran mesin Visualisasi data Menyempurnakan metrik bisnis dengan mengembangkan dan menguji hipotesis 2. Data Analyst Apa itu analis data? Data analyst adalah menguraikan angka dan menerjemahkannya menjadi kata-kata untuk menjelaskan apa yang dikatakan data. Mendapatkan pekerjaan analis data tidak memerlukan latar belakang matematika yang kuat. Namun, mereka tidak dapat berjalan dengan baik dalam peran ini tanpa pemahaman dalam statistik, pre-processing, visualisasi data dan analisis EDA, dan tentu saja, kemahiran dalam Excel. Mengumpulkan data berdasarkan permintaan tertentu dari perusahaan. Membiasakan diri dengan parameter kumpulan data jenis data, bagaimana hal itu dapat diurutkan. Pre-processing memastikan data bebas dari kesalahan. Menafsirkan data dan menganalisis cara-cara memecahkan masalah bisnis. Menarik kesimpulan dari analisis. Memvisualisasikan dan mempresentasikan temuan kepada manajer. 3. Data Engineer Data engineer bertanggung jawab untuk membangun, menguji dan memelihara arsitektur data. Tujuannya adalah untuk membangun dan mengoptimalkan sistem perusahaan yang memungkinkan bagi data analyst dan data scientist menyelesaikan pekerjaan mereka. Kamu harus memiliki keahlian di bidang programming, big data, dan matematika. Selain itu, arsitektur data yang disiapkan oleh data engineer membuat dasar untuk penggunaan data lebih lanjut, termasuk Penyerapan dan penyimpanan data. Pembuatan algoritma. Penyebaran model dan algoritma machine learning. Visualisasi data. Nah, gimana nih sudah tertarik bekerja di bidang data science? Role apa yang akan kamu ambil? Referensi What is Data Science? Oracle Data Engineer vs. Data Scientist vs. Data Analyst NCube Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Marten Bjork on Unsplash Data Analyst, Data Scientist dan Data Engineer merupakan profesi di bidang data yang sedang populer dicari oleh banyak perusahaan. Salah satu alasannya adalah karena data kini menjadi faktor penting untuk mendukung perusahaan di era digitalisasi untuk bisa bersaing dan berkembang. Ketiga profesi ini berperan penting untuk perusahaan karena tanggung jawab dan tugasnya sangat erat dengan perkembangan teknologi dan pengolahan berbagai data. Tak heran ketiganya memiliki prospek karier yang menjanjikan dan banyak orang tertarik untuk mengetahui lebih lanjut mengenai perbedaan Data Analyst VS Data Scientist VS Data Engineer. Umumnya, perusahaan menggunakan data untuk menganalisis dan memprediksi masa depan untuk memudahkan proses keputusan bisnis, oleh karena itu sumber daya manusia terkait data menjadi bagian penting dari setiap perusahaan, terlepas dari industri, jenis, dan ukurannya. Setidaknya, perusahaan membutuhkan tiga profesi yaitu data analyst vs data scientist vs data engineer yang berperan untuk mengelola berbagai data perusahaan. Meskipun ketiga profesi tersebut sama-sama berkutat di bidang data, namun faktanya ketiganya memiliki banyak perbedaan. Jika kamu tertarik untuk memulai karier di bidang data maka kamu harus mengetahui apa saja perbedaan data analyst vs data scientist vs data engineer, penasaran? Simak terus! Baca juga Apa Itu Data Engineering? Pahami Melalui Konsep Lego Definisi Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Helena Lopes on Unsplash Sebelum mengetahui perbedaan ketiga profesi di bidang data, kamu juga harus memahami terlebih dahulu definisi dari data analyst, data science, dan data engineering. Berikut perbedaanya Data Analysis Data analysis adalah proses penerapan teknik statistik secara sistematis untuk menggambarkan, mengilustrasikan, memadatkan dan mengevaluasi data. Sumber The Office of Research Integrity. Proses tersebut dilakukan untuk mengubah data menjadi informasi yang bermanfaat dan ditarik kesimpulannya untuk membantu perusahaan dalam menyelesaikan suatu permasalahan. Biasanya, perusahaan akan menganalisis data konsumen secara real-time yang lebih akurat sehingga bermanfaat untuk membantu perusahaan mengambil keputusan. Data Science Ilmu yang menggabungkan dan memanfaatkan statistika, komputer, dan domain aplikasi yang cara kerjanya dengan memproses data baik itu data terstruktur maupun data tidak terstruktur untuk mendapatkan informasi yang dibutuhkan perusahaan. Data science juga merupakan rangkaian pengolahan data untuk mengekstrak informasi berharga dari data untuk pengambilan keputusan bisnis, strategis, dan penggunaan lainnya Sumber TechTarget. Data Engineering Berbeda halnya dari data analysis dan data science, data engineering merupakan proses membuat, mendesain, menyimpan, dan memproses data secara real-time untuk membuat data mentah bisa digunakan oleh data analyst dan data scientist Sumber Precisely. Data engineering juga merupakan proses untuk membangun saluran atau alur kerja untuk memastikan proses pergerakan dari satu data ke data yang lainnya berjalan dengan efektif dan efisien. Tugas dan Tanggung Jawab Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Mikey Harris on Unsplash Perbedaan data analyst vs data scientist vs data engineer pertama bisa dilihat dari cakupan tugas dan tanggung jawabnya, diantaranya Data Analyst Data analyst bertugas untuk riset, mengumpulkan, dan menggunakan data untuk mendapatkan suatu kesimpulan sesuai dengan project yang sedang dikerjakan. Umumnya, tanggung jawab seorang data analyst di suatu perusahaan meliputi analisis statistik dan penafsirannya, pemeliharaan dan akuisisi data, hingga merepresentasi data melalui laporan dan visualisasi data. Data Scientist Seorang data scientist bertugas untuk mengumpulkan data yang besar dan mengolah data tersebut menjadi insight baru yang berguna untuk proses pengambilan keputusan. Tanggung jawabnya meliputi analisis, pengoptimalan, dan kinerja dari machine learning, deep learning, dan statistical model. Data Engineer Tugas data engineer adalah mengembangkan platform untuk data-data yang akan diolah dan diterjemahkan oleh data analyst dan data scientist. Cakupan tanggung jawabnya meliputi develop machine learning, mengidentifikasi solusi serta perangkat untuk mengoptimalkan akuisisi data dan kinerja seluruh data pipeline. Baca juga Rekomendasi Job Portal untuk Cari Lowongan Data Science Skills Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Wouter on Unsplash Setelah tahu perbedaan definisi, tugas, dan tanggung jawabnya, kamu juga harus mengetahui perbedaan skills yang dibutuhkan, diantaranya Data Analyst Hard-skills yang dibutuhkan seorang data analyst adalah Spreadsheet, scripting, SQL, data warehouse, kemampuan membuat laporan, visualisasi data, Google Analytics, hingga bahasa pemrograman statistik seperti R dan Python. Data Scientist Hard-skills yang dibutuhkan seorang data analyst adalah Spreadsheet, SQL, machine learning, deep learning, data mining, optimasi data, hingga bahasa pemrograman tingkat lanjut seperti C, C++, Java, dll. Data Engineer Hard-skills yang dibutuhkan seorang data analyst adalah arsitektur data dan pipelining, machine learning, data warehouse, SQL dan database tingkat lanjut, pemrograman tingkat lanjut, Hadoop-based analytics, hingga kemampuan scripting dan visualisasi data. Output Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Surface on Unsplash Perbedaan lain dari data analyst vs data scientist vs data engineer adalah output yang dihasilkan. Biasanya, data analyst menghasilkan output hasil identifikasi berupa informasi yang bermanfaat utamanya bagi pihak perusahaan, sedangkan data scientist menghasilkan output berupa data product seperti mesin rekomendasi yang ditampilkan Youtube, terakhir output yang dihasilkan oleh data engineer biasanya berupa data flow, penyimpanan, dan retrieval system. Prospek Karier Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Firos nv on Unsplash Berbicara mengenai prospek karier, ketiga profesi ini sama-sama memiliki prospek dan jenjang karier yang menjanjikan. Namun, rata-rata gaji ketiga profesi ini memiliki perbedaan. Rata-rata gaji data analyst adalah 10-28 juta/bulan Sumber Glassdoor, data scientist 16-27 juta/bulan Sumber Glassdoor, dan data engineer 10-24 juta/bulan Sumber Glassdoor. Baca juga Apa Itu Data Mengenal Jenis-Jenis Data di Era Digital Rekomendasi Pelatihan Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Surface on Unsplash Jika tertarik untuk memulai karier sebagai data analyst, data scientist, atau data engineer, kamu bisa belajar bersama Bootcamp Digital Skola, bimbingan tutor expert, kurikulum berbasis industri, portofolio, professional branding, comprehensive learning module, dan fasilitas lengkap lainnya akan membuka jalan karier kamu berkarier di bidang data. Penasaran? Di zaman serba digital seperti sekarang, pernahkah kamu mendengar profesi data scientist, data analyst, dan data engineer? Ketiga profesi ini sangat erat sekali hubungannya dengan perkembangan teknologi dan pengolahan data loh. Gaji data scientist, data analyst, dan data engineer ini juga tak main-main, bisa puluhan hingga ratusan juta rupiah per bulannya. Penasaran seperti apa itu data scientist, data analyst, dan data engineer? Yuk simak penjelasannya! Seorang data scientist bertanggung jawab membersihkan, memproses, dan mengolah data besar yang sudah dikumpulkan oleh data engineer di suatu perusahaan. Data scientist juga tak jarang harus melakukan eksperimen untuk membuktikan dan memberikan saran yang paling tepat untuk perkembangan sebuah organisasi, perusahaan, dan badan usaha. Dalam pekerjaan sehari-hari, data scientist akan sering berhadapan dengan pertanyaan seperti “berapa banyak jenis pengguna yang dimiliki oleh perusahaan?” dan “bisakah menciptakan model yang bisa memprediksi suatu produk yang akan laris jika dijual untuk target pasar tertentu?” Pada intinya, pekerjaan sebagai data scientist adalah bagaimana kamu bisa menghasilkan suatu kesimpulan yang dapat dicerna dan diterima oleh semuanya, berdasar dari kumpulan data besar yang sudah ada. Setiap hari, data scientist berhadapan dengan program olah data seperti SQL dan Phyton. Setidaknya, kamu harus menguasai bidang pemrogaman data, komunikasi, matematika, statistik, dan eknomi. Baca Juga Manfaat dan Cara Backup Data Website Data analyst Profesi data analyst mengharuskanmu berhadapan dengan banyak data untuk dibersihkan, dianalisis, dan dibuatkan visualisasinya. Tugas data analyst adalah mencari insight untuk memajukan bisnis dari berbagai aspek, lalu kemudian diberikan pada data engineer. Pekerjaan data analyst juga bertanggung jawab untuk mengolah bahan yang diberikan untuk membuat eksperimen dan menentukan strategi bisnis lanjutan. Hari-harimu mungkin akan dihabiskan dengan visualisasi data yang menjadi penghubung tim pemasaran, tim penjualan, tim teknis, dan strategi bisnis. Data analyst juga bertanggung jawab menyelesaikan pertanyaan seperti “bagaimana cara kami menjelaskan kepada manajemen bahwa kenaikan biaya memengaruhi jumlah konsumen?” dan “apa yang mendorong pertumbuhan bisnis?” Untuk menyelesaikan pekerjaan sehari-hari, data analyst akan bekerja dengan program Excel, Tableau, dan SQL. Kamu harus menguasai istilah bisnis dan tools yang digunakan untuk membuat grafik/infografik. Baca Juga Perbedaan Entrepreneur, Intrapreneur, Technopreneur Data engineer Data engineer adalah profesi yang bertugas untuk mengembangkan dan membuat desain arsitektur manajemen data dan memonitor infrastrukturnya di dalam sebuah perusahaan. Kamu akan mengelola jalur data untuk perusahaan yang menangani data dalam jumlah besar. Kamu juga harus memastikan bahwa data bisa dikumpulkan dan diambil secara efisien dari sumber ketika dibutuhkan, dibersihkan dan diproses. Tujuannya adalah untuk membangun dan mengoptimalkan sistem perusahaan yang memungkinkan bagi data analyst dan data scientist menyelesaikan pekerjaan mereka. Kamu harus memiliki keahlian di bidang programming, big data, dan matematika. Sebagai seorang data engineer, kamu akan menggunakan program seperti NoSQL, Hadoop, dan Phyton. Kamu juga harus menguasai Databases, SQL, ETL Tools, Pipeline, shell script, dan basic programming. Data engineer juga harus mempunyai keahlian khusus di bidang programming, matematika, dan big data. Meski terdapat beberapa perbedaan data engineer dan data scientist serta data analyst, ketiga pekerjaan tersebut masih berhubungan dan saling terkait. Data analyst dan data scientist tidak akan bisa bekerja tanpa data engineer. Sedangkan data engineer juga tidak akan maksimal kerjanya tanpa data analyst dan data scientist. Saat ini, ada banyak sekali lowongan untuk ketiga profesi tersebut. Terlebih banyak sekali perusahaan yang membutuhkan seperti contohnya perbankan, kesehatan, pendidikan, media, hingga travel dan transportasi & logistik. Sehingga, kamu punya kesempatan yang besar untuk bisa menjadi data scientist atau data analyst. Semoga informasi ini bisa menambah pengetahuanmu, ya! Dewaweb Team Dewaweb Team menuliskan artikel dengan sepenuh hati. Topiknya mulai dari bisnis online, digital marketing, sampai website development. Yuk daftarkan email kamu ke newsletter Dewaweb di sebelah kanan untuk mendapatkan info terbaru dari Dewaweb! Data science mungkin masih menjadi istilah yang belum terlalu akrab di telinga kita maupun kebanyakan orang pada umumnya. Namun, di dunia bisnis terutama yang berskala besar, bidang ini menjadi salah satu tumpuan menuju kesuksesan dalam perkembangan dan ekspansi suatu terkait data science seperti data analyst, data scientist, data engineer, serta business analyst memiliki peranan penting dalam pengumpulan, penerjemahan, hingga pengolahan data yang bisa digunakan untuk menjadi amunisi dalam menghadapi persaingan profesi tersebut memerlukan ketelitian tinggi dan tanggung jawab terhadap pengumpulan, pengolahan, analisis dan eksperimen data untuk menghasilkan informasi yang nantinya digunakan untuk mengambil keputusan demi kemajuan kamu tertarik untuk menjadi ahli di bidang data, beberapa skill yang wajib kamu miliki di antaranya kemampuan menganalisis data dalam jumlah besar big data, ilmu terkait sistem informasi, teknik informasi, statistika, dan sepertinya sulit, ya? Memang tidak mudah, tapi ilmunya sangat bisa dipelajari, kok. Selagi kamu punya kemampuan berpikir logis dan sistematis, menganalisis, dan suka mengolah data melalui terjemahan angka, kamu punya peluang untuk menjadi ahli data. Apalagi Kuncie punya kelas dan bootcamp yang akan mengupas tuntas soal data analyst. Kamu bisa ikut belajar meskipun belum memiliki rangkaian skill yang saja, nih. Profesi di bidang data gajinya tidak main-main, loh. Makanya, yuk kita pelajari ilmunya bareng Kuncie! Mulai Karir Data Analyst Sekarang Ikut Bootcamp Data Analytics dan mulai langkahmu menjadi seorang data analyst sekarang! Daftar Sekarang!‍Tanggung Jawab Pekerja Data ScienceBerikut ini adalah beberapa tugas utama yang akan dihadapi jika kamu memilih untuk berprofesi sebagai ahli dataMengidentifikasi masalah dan menggunakan data untuk memberikan solusi serta bahan pertimbangan untuk pengambilan keputusan yang algoritma dan merancang eksperimen untuk menggabungkan, mengelola, dan mengekstrak data menjadi sebuah laporan yang dibutuhkan. Menguji dan memilih metode data mining yang tepat untuk digunakan pada suatu peluang untuk optimasi bisnis atau organisasi. ‍Profesi di Bidang Data Science‍Data AnalystTugas utamanya adalah mencari, memproses, dan memvisualisasikan data dalam jumlah besar. Data analyst merupakan seseorang yang bertugas untuk mengolah data, mengambil kesimpulan, dan melakukan visualisasinya. Selain itu, data analyst juga mengemban pekerjaan sebagai pencari insight untuk memajukan bisnis dari berbagai aspek, yang nantinya akan dibantu pengolahannya oleh data engineer.‍Tanggung JawabMengekstrak data dari sumber primer dan sekunderMengembangkan dan memelihara databaseMelakukan analisis data dan membuat laporanMenganalisis data dan memperkirakan tren yang berdampak pada projectMemberikan rekomendasi yang relevan berdasarkan data temuan‍Skill yang dibutuhkanMenggunakan program seperti Excel, Google Analytics, Tableau, dan SQL. Harus menguasai istilah bisnis, SQL, Excel, membuat laporan dan tools pembuat infografik yang menarik.‍Data EngineerSeorang data engineer memiliki tugas untuk membuat desain arsitektur manajemen dan monitoring infrastruktur data di perusahaan. Profesi ini menuntumu untuk mampu mengelola jalur data untuk perusahaan dalam jumlah besar. Data Engineer juga harus memastikan bahwa data bisa dikumpulkan dan diambil secara efisien dari sumber ketika dibutuhkan, dibersihkan, dan itu, tugas lainnya adalah mengembangkan dan menguji ekosistem big data untuk bisnis sehingga para data scientist dapat menjalankan algoritma pada sistem data yang stabil dan optimal.‍Tanggung JawabMerancang dan memelihara sistem manajemen dataMengumpulkan dan mengelola dataMelakukan penelitian primer dan sekunderMenemukan pola dan memperkirakan trend dari data yang didapatkanMembuat dan memperbarui laporan berdasarkan hasil analisis ‍Skill yang dibutuhkanMenggunakan program seperti Hadoop, NoSQL, dan Phyton. Harus menguasai SQL, Databases misalnya RDBMS, NoSQL, Data Warehouse, Data Lake, ETL Tools seperti Pentaho, Ab Initio, Pipeline misalnya Airflow, Kafka, Luigi, Azkaban, pun dengan basic programming dan shell script.‍Data ScientistData scientist bertugas untuk menganalisis dan menafsirkan kumpulan data yang lebih kompleks. Mulai dari pengumpulan, pengolahan, hingga analisis data dalam jumlah besar. Data Scientist biasanya mengolah data yang didapatkan dari data engineer untuk melihat atau mencari peluang bisnis baru dari data yang data scientist harus memahami tantangan bisnis dan menawarkan solusi terbaik berdasarkan analisis dan pemrosesan data melalui eksperimen olah data.‍Tanggung JawabMengidentifikasi sumber pengumpulan data untuk kebutuhan bisnisMemproses, merapikan, dan mengintegrasikan dataMengotomasi pengumpulan data dan manajemen prosesnyaMenganalisis data dalam jumlah besar untuk memperkirakan trendMemberikan laporan beserta rekomendasi yang relevan‍Skill yang dibutuhkanMenggunakan program seperti Spreadsheet dan SQL. Memiliki kemampuan analisis dan statistik, pengambilan keputusan, komunikasi, dan soft-skills lainnya untuk bekerja sama dalam tim. Memiliki pengetahuan Machine Learning dan Deep Learning, Data Mining, optimasi data, dan programming tingkat lanjut C/C++, Perl, Python, SQL, dan Java.‍Business AnalystBusiness analyst bertugas untuk menganalisis dan memvalidasi berbagai hasil olah data untuk pemeliharaan, pengembangan, hingga menciptakan kebijakan pada suatu perusahaan. Kewajibannya pun erat kaitannya dengan efisiensi, produktivitas, dan peningkatan profut suatau usaha sembari menjembatani antara aset, pasar, dan perkembangan seorang business analyst memiliki tugas utama untuk mengidentifikasi bagaimana big data dapat dikaitkan dengan bisnis sehingga mendorong pertumbuhan bisnis yang berkaitan.‍Tanggung JawabMelakukan analisis bisnis secara terperinci mulai dari menguraikan masalah, peluang, hingga memberikan sousiBekerja untuk meningkatkan proses bisnis yang adaMenganalisis, merancang, dan menerapkan teknologi dan sistem untuk pengembangan bisnisMenganalisis harga‍Skill yang dibutuhkanAnalytical skill, komunikasi, riset, problem solving, visualisasi data, dokumentasi dan pembuatan laporan, mampu mengolah data dan SQL.‍Perbedaan Data Analyst, Data Engineer, Data ScientistJob roles data scientist dan data engineer sangat mirip. Namun, data scientist adalah orang yang mengurusi segala aktivitas terkait data. Untuk mengambil keputusan terkait bisnis, data scientist memiliki kemampuan dan lebih terintegrasi. Perbedaan tanggung jawab data analyst, data engineer, dan data scientist dirangkum pada infografis berikut!‍‍Dengan kisaran gaji setara UMR hingga bagi fresh grad, boleh dibilang pekerjaan di bidang data cukup menjanjikan bagi kamu yang merindukan kehidupan makmur nan berkecukupan. Ditambah lagi, beberapa profesi yang sudah dibahas di atas menuntut beraneka skill yang memungkinkanmu untuk bekerja secara independent. Dengan kata lain, kamu pun sangat punya kesempatan bergerak sendiri di luar kewajiban kantor untuk mendapatkan penghasilan Makin tertarik dengan data science? Gali ilmunya bareng Kuncie, yuk!

perbedaan data analyst dan data scientist dan data engineer